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ABSTRACT

For w > 2, define
t
%) V= (5,6,8) = 2200 A (w/2-0)) M 8, (r,n) ey,
0

where Sw(r,t) = (4ﬁt)-w/2exp (-r2/1+t). For © < 2, define

2-0
(**) U'9 = Ug(r,t,f) =T Va_g(r,t’f)o

The functions V& and Ug are solutions of the radial heat
equation [Di + E—%AlDr]u(r,t) = Dtu(r,t) for p=w and
L = © respectively. Moreover, when o = 3, 4, 5, ... , the
bracketed quantity in (%) (denote it by H(r,t)) represents the
temperature in a w-dimensional medium with H(r,0+) = 0 for
r > 0 and into which heat is liberated at the rate f£(y) per
unit time from y =0 to y = t. Thus, for arbitrary w > 2,
V& can be related to a generalized diffusion process with
source f(t).

D.V. Widder has developed an expansion theory for
solutions of the equation

Diu(r,t) = Dtu(r,t),

where u(r,0+) = 0, u(0,t) = £(t).

The function Ug has the property that
Ug(r,0+,f) = 0, UQ(O,t,f)‘= f(t). We develop expansion

theorems, analogous to those of Widder, for the function U

ii



The solution Ug is represented in terms of the set of radial
time functions  {u(p,h,r,t)}, w <2, h> -1, where

h
u(p,h,r,t) = Uu(r,t,t /T (h+1)).

Theorems are developed which relate the asymptotic behavior

of U. and the time average of U

o to the behavior of the

o
function f(t) and its Laplace transform. By means of (¥¥%),
similar theorems are obtained for the function V;;

We examine several sets of special solutions which have
been used in expansion theories for the radial heat equation.
It is proved that the radial time funétions and the elements of

these several sets have a common form, involving confluent

hypergeometric functions.
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1

INTRODUCTION

D. V. Widder [12] has developed necessary and sufficient
conditions for the validity of expansions of solutions of the
equation
(1.1a) Diu(r,t) = Dtu(xyt), r>0, t >0,
where

(1.1v) lim u(r,t) = 0, r>0; limu(x,t) = £(t), t> 0.
t-0+ 0

This theory uses two basic sets of special solutions of (1.la):
[ee] [0} ' . -
{Tn(r,t)}n=0 and (Un(r,t)}nzoi The first set was defined

earlier by H. Poritsky and R. A. Powell [11]. Explicitly,

t
(1.2) T (r,t) =2 k(r,t-y)y /n! &y, r >0, t>0,
0
-1/2 2 .
where k{(r,t) = (4nt) exp (-r°/4t) is the fundamental

source solution of (l.la). These authors show that

(1.3) T (0,4) = ™3 r(niz/2),

therefore

t

f r(t-y) "k, 6-y)T_ (0,5)dy.

[

(14 T (nt)

D. V. Widder defined the element Uh(r,t) of the second set by

(1.5) U (r,t) = Tn_l/g(xyt).

It then follows that



(1.6) U (0,t) = t%/nt,
and
% 1
(1.7) U lest) = jo r(t-y) “k(r,t-y)u, (0,y)dy.

Thus the function Tn(r,t)(Uh(r,t)) may be interpreted as
the temperature of the semi-infinite bar O <r < w, in which
Tn(r,O) =0 (Uh(r,o) = 0) for r >0, and the point r = 0
is maintained at the temperature given by (1.3) ((1.6)) for
t > 0.

The major results zelating to the expansions of solutions
of the problem (1.la)-(1.1b) are the following:

(I) The expansion

(1.8) u(r,t) =.§

J—O[ajTj(r,t) + bjUj(r,t)]

converges to a solution of (l.la) for 0<+t < T, if and only
if

2]

(1.9)  u(r,t) = fok(r+y,t)g(y)dy,

where g(y) is an entire function of growth (2, 1/4T).

(II) The expansion (1.8) converges to a solution of
(1.12) for 0<t <o if and only if (1.9) is valid for g(y)
an entire function of growth (1, q).

(III) 1If aj'= 0, j=0,1, 2, ..;, in (1.8), then the
function g(y) in (1.9) is an even function.

(Iv) 1If bj =0, J=0,1,2, ..., in (1.8), then the



function g(y) in (1.9) is an odd function.

Of fundamental importance is deriving these results is
the replacement of the integrals in (1.4) and (1.7) by
equivalent integrals which are analytic for |r| < oo,

In this thesis, we are concerned with the radial heat

equation
(1.10) Au u(r,t) = D, u(r,t),

A2 go- 1 _ . ps
where AM = Dr + - Dr' When p = n, a positive

integer, the operator An is the n-dimensional Laplacian in -
radial coordinates. In particular, we develop results analogous

to (I)-(IV) for solution of (1.10) of the form

2, W ' .
2 0nl 1Y () e)ay], for 102,

(1.11) V (r,t,f) =
b r(p/2-1) "0
and
(1.12) Uu(r,t,f‘) = poH Vu_u(r,t,f): for p <2,

where S“(r,t) = (hﬁt)_u/e exp (—rg/ht) is the fundamental
source solution of (1.10).

When i = 3,4%,5,..., the bracketed quantity in (1.11)
(denote it by H(r,t)) represents the temperature (or in the
case of a general diffusion process - the concentration) in a
p-dimensional medium with H(r,0+) = 0 for r > 0, and into
which heat is liberated at the rate £(y) per unit time

from y=0 to y=t. Thus for arbitrary u > 2,



Vu(r,t,f) may be interpreted in terms of a generalized diffusion
process with source f(t).

It is shown that 1lim U (r,t,f) = 0, and that, if f(t)
20+ M

is absolutely integrable and continuous from the left on (0,M),
then lim U (r,t,f) = £f(t) for 0< t < M. Defining the

2
-0
set of radial time functions {u(u,h,r,t)}, p <2, h> -1, by

(1.13) u(p,h,r,t) = Uu(r,t,th/r(h+l)),

results analogous to (I)-(IV) are obtained by expanding
solutions of the form (1.12) in terms of the set |
{u(u,m/2,r,t)};;o. It is shown that the function wu(u,h,r,t) .
can be defined in terms of confluent hypergeometric functions.
This allows us to develop integral representations for the
radial time functions which are analytic for lr] < w,

However, certain integral representations are valid only for
special combinations of h and u, ‘and we are then limited

to examining expansions of the form

[+ ©
(1.14) u(r,t) = £ a.u(p,j+1/2,r,t) + = b, u(p,j,r,t),
N j=n,3

In (1.14), unlike the development in [14], hy, and h = are
non-negative integers depending on p. Nonetheless, if

k(r+y,t), in (1.9), is replaced by X(r,t,y), a more

complicated kernel involving Bessel functions, it is shown that



results (I)-(IV) are valid when (1.8) is replaced by (1.14).
Moreover, when W = 1, then ho =h, = 0 in (1.14) and our
results reduce to those given in [14].

We examine the asymptotic behavior of Up(r,t,f).
Theorems are developed which relate the behavior of U“(r,t,f)
and time averages of Uﬁ(r,t,f) to the asymptotic behavior
of the function f(t) and of its Laplace transform L[f].

A typical theorem is the following: Iet f£(t) be a non-

negative function and let L[f] = J“ e"Stf(t)dt converge for
0

s > 0. If there exist constants ¢ >0 and C suéh that
Lif] ~¢/s® as s~ 0, then

-1 t ' c-1
ct IOUu(r,y,f)dy.w et T/r(e), as t .

By means of formula (1.12), theorems pertaining to
integral representations, expansion thebrems, and asymptotic
behavior of the function Vu?u(r,t) are cbtained.

When p = 2, solutions of (1.10) which have logarithmic
singularities in a neighborhood of r = O are obtained by
modifying the definition of Uu(r,t,f). The methods used for
examining series representations for p < 2 are also modified
to obtain similar results when p = 2. Some of the asymptotic
results are also extended to this case.

P.C. Rosenbloom and D.V. Widder [12] made a detailed
study of the validity of expansions for solutions of (1.1a), for

~-o < r <w, in terms of two sets of special solutions:



(a) the set of heat polynomials {vn(r,t)}zzo and (b) the set
of associated functions {wn(r,t)}zzo. These authors develop
expansion theorems which show that

(A) expansions in terms of heat polynomials are valid in
a time strip lt[ < ¢ 1in which the solution satisfies a
Huygen's principle while |

(B) expansions in terms of associated functions are valid
in a half-plane % > g > O in which the solution has certain
entireness properties.
Several methods are given for determining the coefficients in
these expansions, and the L2 theory of such.expansions is also
examined.

More recently L.R. Bragg [2] has developed results
analogous to (A) and (B) for solutions of equation (1.10)
when p > 1, This theory also useé two sets of special
solutions: (a) the set of radial heat polynomials
{R%(r,t)}zﬁo and (b) the set of associated functions
(Rg(r, )5 |

The expansion theorems given in [2] were developed independ-
ently by D.T. Haimo [8], using the sets '{Ph;(u-l)/E(r’t)}Z=o
and {Wn,(u-l)/z(r’t)}:=o' Analogous results for the
L2 theory of such expansions were also developed [9].

It is shown that the radial time functions and the elements
of these several séts of special solutions have the common

form



(1.15)  G(r,t) = ct™F(htp/2, p/2, ro/ht) exp (-ro/bt).

Here, ¢, h, and p are parameters independent of r and t,
and F(a,b,z) is a confluent hypergeometric function with
parameters a and b.

In section 2, we develop integral representations for the
functions Uu(r,t,f) and Vu(r,t,f) and obtain some of their
basic properties. In section 3, a detailed study is made of
the properties and integral representations of the radial
time functions. The asymptotic_behavior of Uu(r,t,f) and
Vu(r,t,f) is developed in section 4. In sections ‘5 and 6,
expansion theorems for the finite and infinite time intervals
are developed, and in section 7, these results are extended to
solutions of (1.10) when p = 2. 1In section 8, after examining
the theories associated with several sets of special solutions
of (1.10), it is shown that the elements of those sets all ha&e
the form (1.15). The Appendix conﬁains a2ll of the results about
confluent hypergeometric functions which are used in sections
1-8. The notation (A-n) is used to refer to the nth

equation in the Appendix.
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INTEGRAL REPRESENTATIONS

H. Poritsky and R.A. Powell [11], in examining the
one-dimensional heat equation, urr(r,t) = ut(r,t), studied
special solutions of the form
(2.1) T (rt) = 28 (r,t) * ("/n1),

I‘>O, t>0, n=o;l,2, ses o
\-1/2 2 «
Here Sl(r,t) = (brt) exp (-r"/kt) and ¥ denotes the

convolution operation defined by

(2.2) £(t) * g(t) = jz £(t-y)e(y)dy.

The authors show that

(2.3) T (0,t) = 24/2 10 (015 /2),
therefore

(2.4) Tn(r,t) = [rt'lsl(r,t)] * Tn(O,t).

In this form Tn(r,t) may be interpreted as the temperature in
the semi-infinite bar 0 <r < . When 1t = 0 the temperature
in the bar is zero at all points r > 0. For t > 0, the end
of the bar at r = 0 is maintained at the temperature given by
the function (2.3).

Formulas (2.1) and (2.4) each have the form

(2.5) u(r,t) = c[tarb exp (—rg/Mt) * £(t)].

The following theorem shows that the radial heat equation



2
d -1 3 _ du(r,t)
(2.6) 5;—2— + E—;— g-l-:- U.(I‘,t) = —%——

also has solutions of the form (2.5).

Theorem 2.1. Let the function £(t) be absolutely

integrable on (0,T) with T < w. Let 0 be the set of
points t € (0,T) at which f£(t) is continuous. If
T
j |£(t)|dat > 0, then equation (2.6) has a solution of the
0

form (2.5) in the region R(Q) = {(r,t)|r >0, t € o} if and

only if

(2.7a) a=(u/2) -2, b=2-y
or

(2.7p) a=-yu/2, b = 0.

Proof. Writing (2.5) in integral form; it follows that
t a_b 2
(2.8) u(rst) = c [ (6-y)"r exp (-r"h (t-y))£(y)dy.
0

Since f(t) is absolutely integrable on (0,T), the integral
in (2.8) exists when t € (0,T). Also differentiation under the
integral sign with respect to either r or t is permissible
in R(0) since f(t) is continuous on Q. Substituting the

form (2.8) into equation (2.6) and simplifying, we have

(2.9) G(r,t;3a,b) * £(t) = 0,
where
(2.10) G(r,t;a,b) = exp (-rg/Ht)[(bﬁi/2+a)ta-lrb

- b(bay-2)83° 2],
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If condition (2.7a) or (2.7b) holds then G(r,t;a,b) =0 and
(2.9) is satisfied. This completes the proof of sufficiency.
From [10], page 15, footnote (2), it follows that if f(t) -
and g(t) are integrable functions and if £ % g = 0, then
at least one of the functibns f and g 1is equal to zero

T
almost everywhere. By hypothesis I |£(t)|dt > 0, thus
0

equation (2.9) is satisfied only if G(r,t;a,b) = O almost
everywhere. In view of formula (2.10), this is oniy possible

when a and b satisfy the following pair of equations:
(2.11) b(b +p - 2) = 0,

(2.12) b+ (u/2) + a= 0.

The only solutions of equation (2.11) are b =2 -p or b= 0.
From equation (2.12), the corresponding values of a are
a = u/2 -2 or a = - u/2. These are the alternatives stated
in the theorem. This completes the proof. _

When p < 2, choose c = Qu—g/r(l-u/2) in formula
(2.5). Iet a and b be given by condition (2.7a). Then

(2.5) defines a solution of equation (2.6) which is denoted by

M2 (1, )H/2

(2.13) U (%) =0, (0:40) = T oy

r 278
@ s, e

where Su(r,t) = (hnt)—“/z exp (—rZ/Mt) is the source solution

of equation (2.6).
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2-p
When p > 2, choose c =2 /I(p/2 - 1) in formula
(2.5). let a and b be given by condition (2.7b). These

choices define a solution of equation (2.6) which is denoted by

- /
o2 (4 )P/ 2

(2.1h4) Vu(r,t) = Vu(r;t:f) = Tz -1y [ Su(r,t) * f(t)]-

Unless stated otherwise it is assumed that p <2 'in any
expression for Up(r,t) and that p > 2 1in any expression

f v t).
or p’(r, )

Theorem 2.2. If a >0, then U, (r,t) = raV2+a(r,t).

The proof of this theorem follows immediately from
formulas (2.13) and (2.1k4).

In integral form, formula (2.13) becomes

-2

t 2-14 2
(2.15) Uﬁ(r,t) = FETEY IO (g) EEEiﬁ§§ZE§l f(t-z)dzﬁ

Introduce the change of variable y = re/hz to obtain

-1 -y -u/2
(2.16) U (rst) = [1(1-0/2)) Irz/ut e VyH/ £(t-1r2 iy ) dy.

We now use formula (2.16) to examine, in detail, the
properties of Uu(r,t). Then, using Theorem 2.2, similar
results are obtained for Vp(r,t).

Theorem 2.3. ILet the function f£(t) be absolutely

integrable on (0,T) with T <®. Then
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(2.17) lim U (r,t) = 0,  pointwise for r > O.
ta0+

Proof. Introducing absolute values on both sides of

(2.16), it follows that

-1 -y 2-p/2 -
(2.18) IUu(r,t)] < [r(1-1/2)] Irg/ute v 2-h/2,-2

If(t-rg/hy)ldy.

-y 2-p/2 —y. 212
v /2 _ Yy2-r/

Since lim e is bounded

Yo

0, the function

by some positive constant M, for sufficiently large values of

y. In (2.18), y varies inversely with t, hence

. o
(2.19) lin |U (r,t)]| < M lim j 5 y'2|f(t-r2/uy)|¢y.
taor H ta0+ r /bt
2
With the change of variable z =%t - r /4y, the inequality
(2.19) becomes
t
lim |U ()| <M lim [ |£(z)]az = o.
t20+ H 20+ 0
In the following theorems, we examine the behavior of

Uu(r,t) as r - O.

Theorem 2.4%. ILet the function f(t) be Lipschitz

continuous with exponent a, 0<a<1, on the interval

[0,T] with T <. Then

(2.20) 1im U (r,t) = £(t), if 0<%t <T.
r-0 H -
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Proof. Let Uu(r,t) be given by (2.16). Define

o«

(2.21) U, (r;t) = [T(1-p/2)17 I 2

e_yy—u/zf(t)dy.
r /4t

Consider the function I(r,t) defined by

(2.22) I(r,t)

]

ﬁp(r,t) - Uu(r,t)

i

[F(l-M/Q)]_l f 2/Lte—yy'_H/g[f(t)-f(t-re/hyﬂiy._

Introducing absolute values, we find

(2.23) [1(r,t)] < [r(l-u/e)]"{fmg/ute'yy'”/glf(t)-f(t-r2/4y)ﬁy-
r

Since f(t) satisfies a Lipschitz condition on [O0,T],
1£(£) - £(t - r7/by)| < M(xZ/by)®. Substitute into (2.23) to
obtain

(2.24)  [1(x,8)] < [0(1-u/2) 1 a(x /) fm2/ute‘yy'“/ 22y

Integration by parts yields the inequality

Mo exp (—rg/ht)

2.25)  |I(r,t)] <
( ) |x(r,t)] lLa(ut)l'“/g‘a(u/%a-l)l‘(1-Ivl/2)

2a, o
Mr -y l—p/2-ad
* (1-p/2-a)r(1-p/2) frg/ute v v

provided -up/2 - a # -1.

Hence



(2.26) lim |I(z,t)| =0, if >0, - p/2 - 1 # -1.
r-0 ‘

If - p/2 - a= -1, the integral in (2.24) reduces to

=]

(2.27) El(rg/ht) = I e_yy_ldy.

From [1], page 229, (5.1.11.), it follows that
(2.28)  [E[(2)] < v + |1nz]| + &%,

where +vy 1is Euler's constant. Replace z by r2/4t in

(2.28) and substitute for the integral in (2.24). Then,

|1(x,t)] < [yrZ2r2® | 1n(r° /it ) | + 222 exp (2°/4t)],

M
T 4% (1-p/2)
and
(2.29) 1lim |I(r,t)] = 0, if t.> 0, - p/2 - a = -1,

-0 '
From (2.22), the definition of I(r,t), we conclude that,

(2.30)  1im U (r,t) = 1im T (r,t), if t > 0.
0 M r0 F

By definition (2.21), the right hand limit in (2.30) is f£(t).

This completes the proof.

Definition 2.1. A function f(t) is continuous from the

left on the interval [a,b] if and only if 1lim f£(7) = £(t)
T5

whenever t € (a,b].
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Theorem 2.5. Let the function f£(t) be continuous from

the left and bounded on [0,T] with T < ». Then

(2.31) 1lim U (r,t) = £(t), if 0<t < T,
r—0 M , -

_]:’_’_r_gg_f___ Let the point ty € (0,T1 %be fixed. Since f(t)
is bounded on [O0,T], there exist constants m, M such that
m< f(t) <M for t € [O,to]. Since f(t) is continuous from
the left at to, given ¢ > 0, there exists a § > 0, such
that [f(to) - f(t)| <e when 0< ty -t <8. Define a pair

of functions fl(t), f2(t) (see Figure 1) by

(2.32) "M | s o<t5to-55/u
£(t)+e-M | |
£1(8) = { (t-t,-38/4) —57m |t M B8/t gm0/
L£(tg) + ¢ ,to—6/4<t_<_to,
and
(2.33) "m » 0< B <ty - 36/4
f(to)—e—m
£,(t) = { (t-t438/%) —5E |t ty=38 /H<t<t =6 /4
L£(ty) - € ,to—6/1+<t§t9.
By construction fg(t) < £(t) < fl(t), and
(2.34) U, (rst,5) < U, (x,t,7) < U, (6,1 ).

Set t =t, in (2.34), then
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> t

o
ct
1
o
[
(@)

FIGURE 1
Graphs of the functions fl(t) and fg(t). The graph of the

function f(t) 1lies in the shaded region.
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(2.35) lim U (v toof ) < lim U (r to,f) < lim U (r,t. ,f.).

OJ
r— 0 r— 0 r—> 0

By construction, the functions fl(t) and f2(t) satisfy the
hypothesis of Theorem 2.4 on the interval [O,to]. Applying
the results of that theorem to (2.35), it follows that

(2.36) f(t ) -e< LimU (r t ,f) < :f‘(to) + e,

r— 0
Since ¢ is arbitrary and to is any point in (0,71, +the

proof is complete.

Theorem 2.6. ILet the function f£(t) be continuous from

the left and absolutely integrable on [0,T] with T < «, Then,

(2.37) lim U (r,t) = £(t), ~if 0<+t < T.
r—»0 M
Proof.  There are two cases to consider depending upon

whether or not f£(t) is finite at the point in question.

Case (a) - £ finite. ILet by € (0,T] be fixed and
let f(to) = M<w®. Since f(t) is continuous from the
left at to, there exists a 60 > 0 and a positive integer

N, such that [f£(t)] < N, when 0 <ty -t <6, Let

{FN(t)};:N be a sequence of functions with

N , if £(t) >N
(2.38) FN(t) = { £(t) , it [f(t)] <N

-N , if £(%) < -N .
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T
. B _ § o
Define © = Iolf(t) FN(t)[dt. Then the sequence {QN}N:NO
is monotone decreasing with limit zero. Iet € > 0 be given.

Choose a positive integer K such that

(2.39a) K>N.,,

0
and
0,C(k)
(2.390) 5 <e,
0
where
~ l—lJ,/g /

N _ (3-p/2) exp (u/2-1)
(2.%0) c(w) T(1 - 1/2) :
Consider the function
(2.41) I(r,t) = Uu(r,t,f) - Uu(r,t,FK).

From definition (2.13), it follows that
(2.42) |T(r,t)| < Up(r,t ]f-FKl)

n-2,) \u/2 2-p -
2 Ly T "
S [}Eo su<r,t)m|f<t>-FK<t>lJ -
Consider (r/t)g-usu(r,t) as a function of r for fixed t.

Tt has a maximum when r° = (2 - p)2t and this maximum is

(2(2-) 1 Pexp (uf21)
& (ha)*/@

Substitute into (2.42) to obtain

t
(2.13) [1(z,t) | < c(n) IO . J_'y |£(3) - F(y) o,

where C(u) is given by (2.40). From condition (2.39a)
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and the definition (2.38) of FK(t), we find that
|f(Y) - FK(Y)I =0 when y € [to'— 60, to]. Thus, with

t =t the inequality (2.43) becomes

O)

“07% |2(y) - F(v)]

(2.4h) [I(r,to)! < c(p) Io = dy.

Replace l/(to-y) by 1/60, its maximum when

y € [0,

to - 60]. Then

0
(2.15) [T(rst) | < o) [2(y) - F(v)ay.

The integral in (2.45) is bounded by Oy From condition
(2.39b), it follows that

(2.46) ]I(r,to)l < e.

Since ¢ is arbitrary, we conclude from formula (2.41) that

(2.47) 1lim U (r,t

f = i .
Hn T, o’ ) llm'Uu(r’tQ’FK)

0
By construction, FK(t) satisfies the hypothesis of Theorem
2.5. Apply the conclusion of that theorem to the right member

of (2.47) to obtain

(2.48) iig Uu(r,to,f) = FK(tO) = f(to).

Case (b) - f infinite. TLet tg € (0,T7] be fixed and

let f(to) = o, Since f(t) is continuous from the left, for
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each integer N > 0 there exists a 6N > 0 such that
£(t) >N when 0<t, -t < Let, (G (t)}o o D
(t) > when Sty - b <8y Iet, (G ]N=l e a

sequence of functions with

(%) s, 0<t <t -6
(2.49) Gy (t) =

N , b= <t <t
Then GN(t) < f£(t) on [O,tO], and U“(r,to;GN) < Up(r,to,f)
so that
(2.50) lim.Uu(r,tO,GN) < lim Uu(r,to,f), N=1, 2, 3, ves o
0 -0
By construction GN(t) satisfies the hypothesis for case (a)
of this theorem. Apply the conclusion of case (a) to the limit
on the left of (2.50) to obtain
(2.51) GN(to) = N < lim Up(r,to,f), N=1,2,3, «c. &
-0

Thus, the limit in (2.51) is + o.

If f(to) = - ®, the inequality (2.51) is valid when
f(t) is replaced by =-f(t). Then, multiplying (2.51) by

-1, we find

(2.52) - 1lim U (r,to,-f) <-N, N=1,2,3, ... »
~0 M
But the expression on the left of (2.52) is just

1im U (r,t ,f). Thus 1im U (r,t.,f) = - ». This completes
H 0 U 0
0 -0
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the proof._

In examining the behavior of Uﬂ(r,t,f)-as r-+0, t
was restricted to the interval [0,T] with T finite. If
T = ©, we have

Corollary 2.1. Let the function f£(t) be continuous

from the left and absolutely integrable on [O,»). Then

(2.53) lim U (r,t,f) = £(t), if 0<t < o.
0 H

Proof. Let tO € (0,) be fixed. Then condition

(2.53) follows for the interval 0 <t < t, by setting T =%

0 0]

in Theorem 2.6. Since to is arbitrary, this completes the
corollary.
Removing the restriction that f(t) be continuous from

the left, we have

Corollary 2.2. Iet the function g(t) be absolutely

integrable on (O,o). If the function f£(t) = lim g(r) is
T - &t~
defined for 0 < t < «, then

(2.54) 1im U (r,t,g) = £(t), if 0< t < =,
40 K
Proof. By construction f(t) = g(t) almost everywhere on
(0,»). From (2.13), it follows that Uu(r,t,g—f) = 0, if
0 <t <w, Hence,

(2.55) lim U (r,t,g) = 1im U (r,t,f).
0 H -0
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But f(t) satisfies the condition of Corollary 2.1, and the
limit on the right of (2.55) is f£(t).
Remark. It is not necessary that l1im f(t) exist in
t

either Corollary 2.1 or Corollary 2.2. For example, if

oJ , 3<t <342, 520,1,2,...

£(t) =
0 s otherwise,
see Figure 2, the conclusions of Corollaries 2.1 and 2.2 are
valid. The same situation holds if g(a) is any function
absolutely integrable on [0,1] and f(t) is defined on [0,o)
by f(n+a)=2"gla), n=0,1,2 ..., O0<a<l.
The following theorems develop similar properties of the

solution function Vu(r,t).

Theorem 2.7. Let the function f£(t) be absolutely

integrable and continuous from the left on [0,). Then, if

Vu(r,t) is given by (2.14),

i

(2.56) lim V (r,t) = 0, pointwise if r > 0,
ta0o+ M

and

(2.57) 1im M™%y (r,t) = £(%), if 0< t < =,
-0 H

Proof. Set p =2 + a in Theorem 2.2 to cobtain
-2
2.58 U r,t) = 7V (z,t).
(2.58) U, (w%) L(5%)

From (2.17), it follows that



23

(%)
F .Y

16 4

—

FIGURE 2

Graph of the function £(t).
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M lin v (r,t),

(2.59) lim U, (r,t) =0 =
ot £-0+

10+

pointwise if r > 0.
This shows that (2.56) is valid. Combining formula (2.58) and
the result (2.53), it follows that
(2.60) 1lim Uu_u(r,t) = f(t) = 1im ru-EVu(r,t), if 0<t <o,
-0 -0

This proves (2.57).

For u > 2, the following result ccrresponds to Corollary
2.2.

Corollary 2.3. Let the function g(t) be absolutely

integrable on (0,o). If the function f£(t) = lim g(v) is
"r—)'t“
defined for 0 <t <», then

(2.61) Lim ™% (r,t,8) = £(t), if 0<t <w.
r-0 M

The following examples illustrate the theorems developed
in this section.
Example 1. With p < 2 define

H 0<t<T

O’
£(t) =

Hl, T<t

From definition (2.13) a solution of equation (2.6) has the

following integral representation:
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t 2
~[r(1-u/2)]"12“"2Hb [ /uyy—u/g(r/y)g_“dy, O<t<T
0

t 2
1 (e0t) = [r(1-p/2) 1724215 & /Wy R )Py
0

t 2
+ Hlj e’ /hyy-u/E(r/y)Q—udy], T<t,
T

Simplifying these expressions, we find
-1 2
(2.62) [{r(l-u/z)] HOF(l—u/Q,r /Ht), 0<t<T

U t) = -1 2 2
u(%) ]N[F(l—H/E)] (B0 (1-p/2,2% /bt )+ (H =0 )T (1-p/2,25/4T) ],
T <%,
Here T(a,z) is the complimentary ihcomplete gamma, function

given by

(2.63) r(a,z) = [ e %% 13t, &> 0.
Z

From formula (2.62) we can easily verify the conclusions of

Theorem 2.3 and Theorem 2.5. That is

lin U (r,t) =0, >0
£ 0+
and
Hyy 0<t<T
1lim Uu(r,t) =
=0 H, T<t .

Example 2. With f(t) = tK, K=0,1,2, ... ,

formula (2.16) becomes
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] K -1 -y -u/2,, 2, \K
U (r,t,t7) = [T(31-p/2)] I ey n/ (t-r"/hy) ay.
a 2
r“ /it
Using the binomial theorem and interchanging summation and
integration signs, we find

K tK XK /K 5 :
(2.64) Uu(r,t,t ) = m by (J) (-r /ut)J :

J=0

I 5 e—yy(l-u/g—a)-ldyo
r“ /4t
If (1-p/2-3) >0, for j =0, 1, ..., K, it follows from
(2.63) that

U (r,t,t5) = o z <K>(-r2/4t)jr(l— /2-3, ro/ut)
W80 = wrey B\ W/2-d; ~

it l-u/Z-j < 0 for some values of J Dbetween O and K, the
corresponding integrals in the sum (2;64) cannot be interpreted
directly in terms of (2.63). 1In these cases, successive
integration by parts will produce an integral which can be
evaluated in terms of (2.63). Hence, Up(r,t,tK) can always

be written as a finite sum of tabulated functions.
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TWO BASIC SETS OF SOLUTION FUNCTIONS

Iet us now examine two sets of solutions of equation (2.6).
The first is the set of radial time functions

{u(p,h,r,t)}. The elements of this set are defined by
(3.1) u(p,h,r,t) = Uu(r,t,th/r(h+l)), p<2 and h> -1.
The elements of the second set {v(u,h,r,t)} are defined by

(3.2) - v(p,h,r,t) = Vp(r,t,th/r(h+l)), w>2 and h > -1,

At this point, the function u(p,h,r,t) is defined only
for r > 0. However, if we substitute (2.16) into (3.1), it

follows that

® 2 h
1 -y /2 (b-r"/hy)
(3.3)  ulp,h,r,t) = sT7s j”rg/hte y ) W

Thus (3.3) provides a representation for wu(u,h,r,t) which is
analytic for |[r]| < e.

Example 2 in section 2 shows that the right side of (3.3)
can be expressed as a finite sum of tabulated functions when
h is a non-negative integer. The following theorem.proves
that (3.3) can be expressed in terms of a single tabulated
function whenever h > -1.

Theorem 3.1. Let wu(u,h,r,t) be given by (3.3) for

2
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<2 and h> -1, Then,

h -rg/ut

(3.4) u(p,h,r,t) = Ef%i:ﬁ7§7 §(h+p/2, u/2, r2/ut),

where w(a,b,Z) is the confluent hypergeometric function
defined in the Appendix, formula (A-3).
Proof. In (3.3), introduce the change of variable

v = r%m/ht. Then

(re/ht)l’“/gth we—@(rg/ut)(é_l)gw-u/z-h

(3.5)  u(ush,r,t) = I(1-u/2)r(h+1) J

dws.
A compariéon of (3.5) with (A-11) shows that by making the
choices a=h+1, b=2-p/2, and z = rg/ht, it follows

that

h -r°/lt, 2, 1-p/2
(3.6) u(p,h,r,t) = Le ;(i _(i/é%t) a w(h+l;2-u/2:r2/“t)-

A similar comparison of (3.6) with (A-9) shows that by making
the choices a =h +p/2, b=yp/2, and z = rg/ht we obtain

h -r2/4t

3.7)  u(wh,r,t) = I%—iw—g—r ¢(n + u/2, u/e, ro/ht).

This is precisely formula (3.4).
Although (3.4) is valid when h > -1, +the right hand
member of (3.4) is defined for all real h. That is, even

though the integrals in (3.3) and (3.5) do not converge if
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h < -1, formula (3.4) provides an extension to real h of the
definition for u(p,h,r,t) given in (3.1). In the following
theorem, we examine the properties of the function given in (3.k4)

when h is real.

Theorem 3.2. Let u(p,h,r,t) be given by (3.4) for h

real. Then
(A) u(p,h,r,t) satisfies equation (2.6),

(B) 1im u(p,h,r,t) =0, if = £ 0,

t— O+
(C) if h # -1, ~2, =3, ... , lim u(p,h,r,t) = th/r(h+1), for
r—> 0
t >0, and

(D) if h = -1, -2, -3, ... , lim u(p,h,r,t)
r— 0

0, for t > O.

Proof of (A). Let =z = rg/ht and denote differentiation

with respect to z by '. Set

(3.8) F(z) = \Mh + H/Q; IJ/E; z).
Then, (%.4) becomes

(3.9)  u(p,h,r,t) = [F(1-p/2)1 7t e (2).

From formula (3.9), it follows that

[r(1-1/2) 1712 e ™% (2 /2) [F? (2)-F(2)],

it

Du
r

[T (1-1/2) 17 e 72(1/2) (27 /20 )8 " (2) (227 /£ )" (2)

+ (r2/2t-l)F(z)],

D2u
r

and

o
[+
]

(o = [0(1-0/2) 17 e P Logr (2)+(2+0)F (2) 1.
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Substitute these expressions into equation (2.6) to obtain
(3.20)  zF"(z) + (n/2-2)F'(z) - (u/2+h)F(z) = oO.

This is precisely the confluent hypergeomefric equation (A-1)
with parameters h + j1/2 and p/2. Since F(z) is given by
(3.8), it satisfies equation (3.10) identically for all real
values of h and p. This completes the proof of (4).

Remark. From.th; proof of (A) it is clear that if ;?(z)
is any confluent hypergeometric function with parameters h+p/2
and p/2, then a éolution of equation (2.6) is given by
u(r,t) = cthe_rg/ut;;(re/Ht). We will make use of this fact in
section 8.

Proof of (B). From formulas (3.4) and (A-14), it follows

2
that h -r /l].t .
. . t7e 2 —h-u/2 .
1im u(p,h,r,t) = 1lim (r=/bt) = 0, if r#0.
o> O+ oo+ [ (AH/2)

Proof of (C). From formula (3.4t), we have

(%3.11) lim u(p,h,r,t) = £ 13 /iy hu/2,0/2, 10 /it
. Lm w,h,r,t) = REEWE) r—jg e Y (h+u/2,1/2,r" /4t).
When p <2 and h# -1, -2, -3, ... , choose b = p/2,
a=h+u/2, and z = rz/ht in Table 2, (e), (f), or (g)
(depending on the actual value of u). In each case, by
applying the appropriate formla for ¢(h+u/2,u/2,r?/4t), (3.11)

reduces to
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. 8 r(1-4/2) .n
r}jg u(p,h,r,t) = T(172) é(hi{)) =t/ (h+1).

Proof of (D). When p<2 eand h = -1, -2, ..., -K, cens

(3.4) becomes o
LK -r /it

(3.12)  u(p,-Kr,t) = T/2) ¢(*K+H/2:H/2:T2/%)-

A comparison of (3.12) with (A-13) shows that the choices

a=-K+p/2, n=K1l, and z = rg/ﬂt lead to

(-1)K'1(K-1)zt’K [ 2 -rg/ut (1-p/2), 2 ]
. s -K,r,t) = r r=/h

Since lim Lé}i“/g)(rg/ht) is a constant if t > 0, it follows
r— 0 .
that ~ lim u(p,-K,r,t) = 0, t > 0.
r- 0

Corollary 3.1. When u < 2, there exist solutions of

(2.6) with the property that u(0,t) = lim u(r,t) = o.
t— O+

Proof. By properties (B) and (D) of Theorem 5.2., the
set {u(u,—K,r,t)}Z:l provides a countable collection of such
solutions for each value of pu < 2,

In the following theorem an integral representation is
developed for radisl time functions of the form u(u,m/E,r,t),
m=20, 1, 2, ... . This repfesentation is used to determine
whet solutions of equation (2.6) have valid series representations

of the form



(3.14) u(r;t) = T a, u(p,m/2,r,t).
m=0

Theorem %.3. Let nu <2 and let m be a non-negative

integer such that m + p > 0. Then,

el
A-e/2 T /e me-zz/htzu/Q
t/% T(1-1/2) 0 b/2-1

Hefed & ]

Proof. A comparison of (3.4) with (A-10) shows that bty

(rz/2t) -

(3.15) u(u,m/E,r?t) =

dz .

making the choices a =h +p/2, b=p/2, and z = rg/ht, it
follows that

e-rz/utgp/zrl-u/e
T T2 (b (b e/2)

(3.16) u(p,h,r,t)

1/2JC-1/2)d

fze—y(ty)h+”/u—l/2 (ry

n/2-1
if h + u/? > 0. If h=k, a non-negative integer, introduce

the change of variable wg/h = ty. From the identity

r(2k+l) = hkﬁ_l/gr(k}l/2)r(k+l), it follows that

2/
rl"“/Ze"r /|'t me—wg/utw“/g

(5-17) u(p, kyr,t) =
t/m T (1-p/2) "0

g_l(nm/2t) .

ok

k4
[_F 1/2) o ; ] dw, if k + p/2 > 0.

r(k+u/2

When m =0, 2, &, ..., and k = m/2, (%.17) reduces %o



(3.15) and is valid for m + p > O.

If k is a non-negative integer and h

k + 1/2,

introduce again the change of variable w2/u

ty in (3.16).
Using the identity T (2k+2) ='22k+ln'l/?r(k+1)r(k+5/2), it follows
that

2
1-p/2 -r" /bt » 2 It /2
< e™® / wu/ KH/E_l(rw/Zt)c

(3.18)  u(p,kl/2,7,t) = =
t /1 T(1-p/2) "0

F(ri1/os1/2)  o2(EL/2) |

Tl /onga) (a(Raya)y| e M EY 1/2 + /2 > 0.

If m=1, 3, 5, ... and k + 1/2 = m/2, then (3.18) reduces to
(3.15) and is valid when m + p > 0. This completes the proof.
The following theorem develops corresponding properties for

the function v(u,h,r,t) when p > 2.

Theorem 3.4, With w > 2 and h real, let v(u,h,r,t) be
given by

2
r2—pthe—r /Mt o
(3.19)  v(p,h,r,t) = (L 75-T) y(ht+e-u/2,2-p/2,7°/4t).

Then the following statements afe valid,

(A) Formuwlas (3.19) and (3.2) are identical when h > -1.
(B) If a >0, then wu(2-a,h,r,t) = rv(2+a,h,r,t).

(C) The function v(u,h,r,t) satisfies equation (2.5).

(D) If r ié O; lim V(H,h;r’t) A= O.
t— O+

- h
(E) If h+# -1, -2, -3, ... , lim o Ev(u,h,r,t) =t /T(h+l),
r— 0
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for t > 0.

(F) If h= -1, -2, =3, ... , lim ru—gv(u,h,r;t) = 0, for t > O.
r— 0O

Proof of (A). Choose p = 2 + a in Theorem 2.2.  Then

(3.2) becomes

2-1, h
(3.20)  v(p,h,r,t) = Uh_“(r,t,t /r(h+1)), for h > -1,
Applying definition (3.1) and Theorem 3.1 to the right mwember of
(3.20) we obtain formula (3.19).

Proof of (B). Since Theorem 3.2 extended the definition

(3.4) of u(p,h,r,t) to include all real h, the validity of
statement (B) follows from a comparison of formula (3.19) with
(3.4).

Statements (¢), (D), (E), and (F) are immediate conéequences
of statement (B) and Theorem 3.2, results (A), (B), (C), and (D)

respectively.
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ASYMPTOTTIC BEHAVIOR OF SOLUTIONS FOR IARGE t

We now examine the asymptotic behavior of the functions
Uu(r,t,f) and Vu(r,t,f) in terms of the behavior of £(t)
as T —»w, Results are obtained by two methods. The first
method uses results from the theory of Laplace transforms
which relate the asymptotic behavicr of a function to that of
its Laplace transform and vice versa. The second method uses -
definitions (2.13) and (2.14) and relates the ésymptotic
behavior of the functions Uﬁ(r,t,f) and Vp(r,t?f) to the
special solutions defined in section 3.

The following notation is used to describe the asymptotic
behavior of a function. By the expression . f(x) = 0(g(x)). as
X - Xy, We understand that the quotient l£(x)/g(x)] is

bounded in some neighborhood of x and bty the expression

O)

f(x) = o(g(x)) as x —x we understand that

O)

lim £(x)/g(x) = 0. A function f(x) is asymptotic to the
X X

0 : ,
function g(x) as x = x,, written f(x) ~ g(x) as x = X4
if and only if f(x) = g(x) + o(g(x)) as x - xy- In using
the 'big O' or 'little o' notation, the phrase 'as x ->xo' is

omitted when there is no ambiguity about the point Xy
The following theorem is a restatement of [13], p. 182,
Corollary la. It reiates the asymptotic behavior of a function

to that of its Laplace transform.

35



Theorem 4,1, If there exist constants c¢ > 0 and C such

that

c-l/

(4.2) f(t) ~ Ct T(c), as t 5o,

and if Tf(s) = I e-Stf(t)dt converges for s > 0, then
0
(k.2) T(s) ~ ¢/s%, as s - 0+,

Remark, Formula (4.2) does not imply (4.1) even when £(%)
is restricted to non~negative values. For example, éhoose
f(t) =t + t cos t. Then, f£(t) is not asymptotic to +.
However f(s) = l/s2 + (sg-l)/(s2+l)2, and f(s) ~ l/s2 as
s - O+,

The following theorem is a restatement of [13], p. 192,

Theorem %.3. It provides a partial converse to Theorem k4.1.

Theorem 4.2, If the function a(t) is non-decreasing and

the integral g(s) = fme-Stda(t) converges for s > 0, and if
there exist constantso ¢c>0 and C such that g(s) ;,C/sc as
s = 0+, then a(t) A.th/F(c+l) as t — o,

We now apply these results to the functions Up(r,t,f) and
f(t). Definition (2.13) expresses U“(r,t,f) as a convolution
integral. From [7], p. 146, (29), it follows that

l-p/2 _
(4:3) B, (04,0)] = s (B2 (/5 ).

In this expression, T(s) denotes the Laplace transform of f(t)

and Ka(z) is the modified Bessel function of the second kind
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with index a. We now prove

Theorem L4.3. TLet f£(t) be a non-negative function and let

x
f(s) = I e—Stf(t)dt converge for s > 0. If there exist
0

constants ¢ > 0 and C such that f(s) N,C/Sc as 8 — O+,

then ] R

TR A i Y-

and "

(h.5) o [Uu(r,y;f)—f(y)}dy oY), as b e

If, in addition to the above hypotheses, f(t) ~ th_l/F(c) as
t - w, then

t
(4.6) % I Uu(r,y,f)dy - £(t) = o(tc"l), as t — o,
0

Proof of (4.4), Since f(t) > 0, it follows from (2.13)
- t
that Uﬁ(r,t,f) > 0. Choose a(t) = f Uu(r,y,f)dy in Theorem
o _

4,2. Then,

(1) s(s) = fZe"Stda(t) = LY, (7,t,£) 1.

By hypothesis f(s) ~ C/sc as s - Ob. Substituting (4.3) into

last member of (4.7), we find

(%.8) g(s) ~¢/s%, as s - 0+.

Since a(t) satisfies the hypotheses of Theorem 4.2., it

follows that
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(4.9)  a(t) ~ ct8/r(cHl), as t sw.

Formula 4.4 is obtained by multiplying both sides of (4.9) by c/t.
4 A .
Proof of (4.5). Define b(t) = [ f(y)dy. Then b(t)
0

satisfies the hypotheses of Theorem 4.2 since (i) b(t) is
[o0] [o0]

non-decreasing, (ii) g(s) = I e"Stdb(t) = I e_Stf(t)dt converges
0 0

for s >0, and (iii) g(s) ~ C/sc as 8 —»0+. As a

consequence of Theorem 4.2,
(4.10)  b(t) ~ ct/r(c+l) s  as t - w.

Formula (4.5) is obtained by subtracting (4.10) from (4.9).

Proof of (k.6). In this case,

(.11)  £(8) = ctC7lr(e) + e(6)6°7L,

where ¢(t) -0 as t - ., Subtract (4.11) from (4.4) to obtain
formula (4.6).

In the following theorem we describe the asymptotic behavior
of the function U@(r,t,f) in terms of the radial time functions
discussed in section 3.

Theorem 4.1, TLet the function f£(t) be absolutely

integrable on (0,T) for each T € (O,w). If there exists a

constant ¢ > 0 such that f(t) mltc/r(c+l) as t -, then
(k.12) U@(r,t,f),v u(p,c,r,t)y  as t - w, T >O0.

Proof. By hypothesis f(t) = tc/F(c+l) + e(t)t%, where

e(t) 50 as t - w. Let >0 Dbe given. Choose M > 0

€0
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such that |e(t)| < eO/F(c+l) when t > M. Define
g2

r\° exp(—rg’Ht)
G(r,t) = T(A72) %) ~—3;57?'4---"—-- When t > M, it follows

from definition (2.13) that

s

M

(4.33) Y (2,6,8) = [ £()6(r,55)oy

0

%
+ [ [y%/r (e+1)+e (v)y°1a(x, b=y )dy
M

M

= [ [£()-v"/r(e+1) Ja(r,b-7)dy
0

t

%
+ [ [yS/r(c+1) 1a(r,t-y)dy + [ e(y)ySc(r,t-y)ay
0 JM

M
u(p,c,ryt) + jo[f(y)-yc/r(c+l)]G(r,t—y)dy

t

[ ey a(r,t-y)ay.
M

+

Consider G(r,t) as a function of t for fixed r. It has a

. 2
maximum when t = r"/[2-p) and this maximum is

2“—2[2(4—u)]2’“/2exp (u/2-2)

r°r (1-p/2)
M M
]fo[f(Y)-yc/r(C+l)]G(ryt-y)dyl <0 jo[lf(y)%fyc/F(C+l)]dy < Cys

For r >0, it follows that

where Cl and 02 are positive constants depending on =r.

Moreover, |e(t)] < eO/F(C+l) when t > M, so that
t L

. |
[ ey ale,t-y)ay| < ey [ BE/r(er)Ia(rtv)dy = ¢ ul,e,r,b).
M 0
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Substituting these expressions into the last member of (4.13), it
follows that

|Uu(r,t,f) - u(p,e,r,t)] < C, + g u(p,c,r,t).

Since u(p,c,r,t) > 0, we have

Uu(r,t:f)-u(u:C;r;t) 02

b,k . .
(.24) u(psc,r,t) < u(pye,r,t) ¥ 0

From Theorem 3.1 and Table 2, (e), (f), or (g) (depending on the

size of ), it follows that

1im u(p,c,r,t) = fzzéjj-lim. 3¢, if r > 0.

t— t—

Hence, if ¢ > 0, it follows from (4.14) that

Uu(r,t;f)—u(u:C;r;t)

k.1 lim < g
( 5) ts o u(p,c,r,t) o
Since ¢, is arbitrary, the limit in (4.15) is zero. This

completes the proof.
For the function Vu(r,t,f) we have

Theorem 4.5. Iet f£(t) be a non-negative function and let

<«
?(s) = I e_Stf(t)dt converge for s > 0. If there exist
o)
constants ¢ > 0 and C such that f£(s) ~ C/sc as s — O+,

then

%
¢ [,V (r,y,f)dy ro RSt
Ou,,

~

(+.16) S HO) s

and.
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t . o ;
I [Vu(r,y,f)—r uf(Y) lay

(ha7) 2 - - o(t° 1), as tow.

If, in addition to the above hypotheses, f(t) ~ th*l/r(c) as
t— o, then

%
(4.18) %j Vu(r,y,f)dy - 2PHe) = o(6%Y), as tow.
0

Proof. Replace § by U4 - p in formulas (4.12), (4.13),

and (4.14). Multiply these formulas through by o

and use
Theorem 2.2 to obtain (4.16), (4.17), and (4.18) respectively.
By a similar argumeht we can prove

Theorem %.6. Iet the function f(t) satisfy the

hypothesis of Theorem 4.4, Then
(4.19) Vu(r,t,f)Nv(p.,c,r,t), as tow, r > 0.

The following examples illustrate the theorems developed in
this section.

Example 1. Choose f(t) =% + t cos t in Theorem 4.3,
From the Remark following Theorem 4.1, it follows that f(t)»
satisfies the hypotheses of only the first part of Theorem 4.3

with ¢ =2 and C = 1. Formulas (4.4%) and (4.5) become

t
2 IOUu(r,y,t+t cos t)dy

‘t 'Nt,

and
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t
'J“ [Uu(r,y,t+t cos t)-(y+y cos y)ldy
0

From this example, it is clear that the condition
£(t) ~ th/f‘(c+l) is sufficient but not necessary for the
validity of formulas (L4.4) and (4.5).

Example 2. Define a unit step function H(t) by

0 ,t<0
H(t) ={1/2 ,£ =0
1,5 >0

[ee]
In Theorem 4.3, choose f(t) = ¢ an“lH(t-nk), with Ja| <1
n=1 ’

(see Figure 3). Then f(%) NT}-E and, using [1], p. 1025,

— k
(29.3.66), f(s) = 1/s(e S—a). Thus the hypotheses of both parts
of the theorem are satisfied with ¢ =1 and C = 1/(1—&)..

Formulas (4.4)-(4.6) become

t
U (I':y :f)dy
J,o K 1
T ~1-a’
and

t t

J’OU“(r,y,f)dy J‘O[UH(T:Y)f)"f(y)]dy
- £(t) = T = o(1),

t

as toow,
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£(t)
&
2
a [
a {'
1 (e
i i } ot

0] k 2k 3k

FIGURE 3

o]
Graph of the function f£(t) =¥ an“lH(t—nk).
n=1
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EXPANSION THEOREMS FOR THE FINITE INTERVAL 0 < t<T

We now determine which s§lutions of equation (2.6) can be

represented in a series of the form

©
(5.1) u(r,t) = % [aku(u,k,r,t) + bku(u,k+l/2,r,t)].

k=0
In this and the following secticn, necessary and sufficient
conditions are developed in order that a solution of (2.6) have
a series representation of the form

o

(5.2) w(r,t) = ¢ aku(u,k,rgt) + bku(u,k+l/2,r,t).
k=

ho k=hl

Here hO and hl are non-negative integers depending on u.

We then have the result that a solution of (2.6) has a

representation of the form (5.1) if and only if

ho—l hl-l
u(r,t) = % aku(u,k,r,t) + T bku(p,k+l/2,r,t) + o(r,t), where.
k=0 k=0

w(r,t) is given by (5.2). In order to develop these expansion
theorems, we need some results pertaining to entire functions.

Definition 5.1. A function f(z) is of growth (p,s) if

and only if

(5.3)  £(z) = o(exp ([2]°6/0)), as z -,

by
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for any © such that 0 < 0 < 1. For example, the functions

l+1/z) 5

sinh 522, exp(z and 2z~ all have growth (2,3).

Let f£(z) and F(z) be entire functions defined by

(5.4) f(z) = T ¢ zn/nl; F(z) = % |e ]zn/nl.
n=0 " n=0

Then the growth of the functions f and F is determined by
the sequence {lcnl}:;o. The gpecific results we need are that

the functions defined in (5.%) have growth (2,5) if and only if

e, 17/

they have growth (1,5) if and only if

(5.6) 1lim sup lcn[l/n < g.
n- o

We examine expansions in terms of the sets of radial time
functions [u(u,k,r,t)]z”o and {u(u,k+l/2,r,t)}z_o separately.
The main theorem is obtained by combining the two results.

Theorem 5.1. ILet p <2 and let h._ be the least integer

0]

such that h, + u/2 > 0. A function u(r,t) has an expansion

of the form

(5-7) u(r:t) = 3 aku(u;k;r,t);

__ho

which converges for 0 <t < T, if and only if
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2 co
(5.8)  u(e,t) = ST oy e (e

ty/m r(1-p/2) "o "

Here, g(y) is an even entire function of growth (2,1/4T)

defined by

> k+1/2 ek
(5~9) g(Y) =k_2 ak ;Ek:u?Q; . (gk)f P)
o

=2

and.

2
_ -y /Mt p/2 1-p/2 .
. = K .
(5.10) Tu(r,t,y) e y ! r H/z_l(ry/Eu)

Proof. Sufficiency. Substitute (5.9) into (5.8) and apply
Theorem 3.3 with m = 2k.  We formally obtain the series (5.7).
Since Tu(r,t,y) is positive for r, t, and y > 0, the
term-by-term integration needed to derive the series (5.7) is

valid if

(-11) 1= [ 1 (el <o

Here, G(y) is obtained from g(y) by replacing & by lakl

in (5.9). Write (5.11) in the form

m M
(5.12) 1= J"OTH(r,t,y)GW)dy + [ T (xt,5)6(y)ay

[e o]

+ jMTu(r,t,y)GW)dy.

Denote the integrals in (5.12) by Il, 12, and I, respectively.

3

For sufficiently small y, (5.9) shows that
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2h
r(hy+1/2) y 0

a(y) ~ Iahbl F(hga/2) (BT - It follows from [1], p. 375,

(9.6.9) that

u/2 rQ-u/2) r)“/e-l =

Thus when =r % 0 end t >0 are fixed, and m is sufficiently

small

m 2(ho+u/2)~l

f
(5.13) 1, ~C[y dy.

: 0
We conclude that the integral I, dis finite. The function g(y)
and, hence, G(y) has growth (2,1/4T). When M > 0 is
' yg/hTQ

sufficiently large, it follows from (5.3) that G(y) < e
when y > M and © is any number between -0 and 1., Also,
for sufficiently large y, if r % O and t >0 are fixed,
then y“/grlw“/%Ku/g_l(ry/2t) is bounded by some positive

constant 02. Then, for M sufficiently large

9 2
(5.14) 1,<¢, [ ¢V (/46 - 1/hT0) 5
M

It is clear that this integral exists and is finite if
0<t<er for arbitrary © such that 0 < 6 < 1. Finally,
since Tu(r,t,y)G(y) is a bounded continuous function of y on
the interval [m,M], i2 is finite. This fact, combined with
(5.13) and (5.1%) prove the validity of (5.11) when O < t < T.
Necessity. Assume the validity of the representation
(5.7). The function wu(p,k,r,t), as given by (3.4) is an even

function of r. Since
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1im u(p,k,r,t) exists for t > 0O,
0

> k
5.15 u O’t = Z t klo
(535) (o) - 3

By hypothesis, this series converges for 0 <t < T, Applying

Stirling's formula to the series (5.15), we obtain

1/n
|anl 1

(5.16)  lim sup
n -

n — eT

Use formula (5.5) to examine the growth of g(y), as given by
(5.9). Since only even powers of y are involved, replace n by

en, and c, by anr(n+1/2)/r(n+u/2) in formula (5.5).

Simplifying, we have
1/n
o, 1/

(5.17) 1im sup »—Eﬁ~n—
n -+ o

L

<

old

A comparison of (5.16) and (5.17) shows that g(y) has growth
(2,1/4T). It follows that the integral in (5.8) converges
absolutely if O0< t < T. Therefore, the interchange of
summation and integration signs needed to obtain (5.8) from
(5.7) is valid. This completes the proof.

For expressions in terms of the set {u(p,k+l/2,r,t)}§=0’
we have

Theorem 5.2. ILet u < 2 and let hl > 0 De the least
pAL

1 ¥ =5~ > 0. A function u(r,t) has an

integer such that h

expansion of the form
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(5.18) u(r,t) = % bku(u,k+l/2,r,t),
k=hl

which converges for 0< t < T, if and only if

2 ©
(5.19)  u(r,) = SRLELE) (g piny)ay.
ty/ r(1-p/2) "o *

Here, T“(r,t,y) is given by (5.10) and h(y) is an odd entire
function of growth (2,1/4T), defined by

r((k+1/2)+1/2) vy
k T'(k+1/2+u/2) (2k+1)t °

(5.20) n(y)= % b

k:hl

Proof. Sufficiency. Substitute the series (5.20) into the
integral in (5.19) and apply Theorem 3.3 with m = 2k + 1., We

formally obtain the series (5.18). The term-by-term integration

needed to derive the series (5.18) is valid if

o

(5.21) J = jOTH(r,t,y)H(y)dy < o,

where H(y) is obtained from h(y) by replacing b, by |b

k kl
in (5.20). The same argument that was used to prove inequality
(5.11) can now be used to show that the inequality (5.21) is

valid for 0 <t <T.

Necessity. Evaluating the series (5.,18) at r = 0, we

obtain

k

(5.22)  u(0,t) = £ b 652 (kiz/2).
k:hl
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From the identity T (k+1/2) = nl/gr(2k+l)/4 r(k+l), it follows
that

(5.23)  u(0,t) = kY22 5 W (1) 1o, 6%/ (242) 1

k:hl

By hypothesis, the series (5.23) converges for 0 <t < T. Apply

Stirling's formula to the series in (5.2%) to obtain
1/n
Ibnl 1

1 ] e L em
(5.24)  1im sup = < T
n-w

Use formula (5.5) to examine the growth of u(y), as given by

(5.20). Since only odd powers of y are involved, replace n

n+1 1/2
Conyy PV Py Fégnil;gl:/é))

Simplifying, we have

by 2n + 1 and in formula (5.5).

lb ll/n )
(5.25) Lin sup ——=<=

A comparison of (5.25) with (5.24) shows that h(y) has growth
(2,1/4T). It follows that the integral in (5.19) converges
absolutely if 0 <t < T. Therefore the interchange of
surmation and integration signs needed to obtain (5.19) from
(5.18) is valid.

The main result of this section is obtained by combining
Theorems 5.1 and 5.2.

Theorem 5.3, Tet u <2 and let h and h > 0 be the

0 1
+p/2 >0 and hy + (u+l)/2 > 0.

least integers such that hO

A function wu(r,t) has an expansion of the form
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(5.26)  u(r,t) =% aku(u,k,r,t) + % bku(u,k+l/2,r,t),

k:ho k=hl

which converges for 0 <t < T, if and only if

2 fes)
(5.21)  u(e,t) = 22LELEL 0 g ye(y)ay
t /7 r(1-p/2) “o°

Here Tu(r,t,y) is given by (5.10) and f(y) is an entire

function of growth (2,1/4T) defined by

© 2k © 2k+1
olo) _ T(k+l/2) ¥y T (k+1) y
(5.28) J(y)—lfhakrfgmﬁg'(ﬁg?*lfhbkr(m1ﬂym@7(aagr
o gl

It is clear that function defined by the series (5.26) satisfies

equation (2.6) for 0<t < T. Moreover, lim u(r,t) =0 if
120+
k+1/2

[a0] k (o]
r# 0, and u(0,t) = % a, b k! + ,§ bt

k:ho kwhl

When p > 2, we have

/T (k+3/2).

Theorem 5.4. Iet o > 2 and define p =4 - @, Let hy

+p/2>0 and

and hl > 0 be the best integers such that hO
hy + (u+1)/2 > 0. A function v(r,t) has an expansion of the form
[eo]

(5.29) v(r,t) = T akv(w,k,r,t) + % bkv(w,k+l/2,r,t),

k=ho k:hl

which converges for 0 <t < T, if and only if the function
u(r,t) = rw_gv(r,t) has an expansion of the form (5.26) which
converges for 0 <t <T.

Proof. WNecessity. Since u(r,t) = éb—gv(r,t) and u(r,t)

also has an expansion of the form (5.26), it follows that
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(5.30)  v(r,t) = r=Pu(r,t) = % akr2_wu(4—ag,k,r,t)

k=ho

[o0]
+ % bkrg"‘bu(l;—w,k-kl/e,r,t).

k.:hl

With a = 2 - w, apply Theorem 3.4, statement (B) to the
terms in the series (5.30). We then obtain formula (5.29). A
proof of sufficiency is obtained by reversing the steps in this
argument.

The following examples illustrate the theorems developed in
this section.

Example 1. In Theorem 5.1, set p = 1-2m with
m=0,1, 2, ... . Then hy=m  Choose g(y) = (cyg)mecyg,

with o > O. Then g(y) is an entire function of growth (2,5).

In the notation of formula (5.9)

B (uo)kr(k-mﬂ/z)r(kﬂ)

% T T2 (K-mil) :

It follows that a solution of equation (2.6) has the series

expansion
(5.51) U.(I‘;t) = kzm (ugzl;f‘/él)tljl?;;%éiif)'(k+l) u(u;k:r:t):

which is convergent for 0 <t < 1/ks. An integral representation

for this solution is given by '
m+1/2 20y 2 2
- t -y /it _1/2- .
u(r,t) = = exp(-x”/Mt) [ e v/ v / s +l/2(ry/2t)g(y)dy.
0

t /% T(mt1/2) m
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From [1], p. 444, (10.2.17) and (10.2.18), it follows that if
1/2 z .
z > 0, Km+l/2(z) = (n/2z)" “e Ph(l/z), where Ph(y) is a

polynomial of degree m in y. Then,

(or)" & ()t

2
. ulr, = t /ry ) e .
(5.32)  u(r,t) T2 meoy Yo v B, (2t/xy)e™ ay

From this series (5.31), we have

(5.53)  w(o,) = 3 L)TOemil/z) e ame 0172

ya 7 e e v
o T A7ET (kemid)

This series converges for 0 < |t| < 1/bs. If o <0, g(y) has
growth (2, |c]) and the integral (5.32) converges for all t > 0
while the series (5.33) converges only when 0 < |t| < 1/k|s].
This example shows that the integral (5.8) and the series (5.7) may
converge on different intervals, each of which contains the
interval (0,T).

Example 2, Set m = 0 in example 1. Then p = 1
and g(y) = exp (oyg). Moreover p(0,t) = (1-hgt)—l/2 and the

® 2 2
integral (5.32) reduces to u(r,t) = (Trt)-l/2 I e-(r+y) /LH;eGy dy-

0

Introducing the change of variable,

w = (l-uct)l/g r+y" + Z9 JE , it follows that
2 ./t 1-bgt

w(rt) = (1hot) Y Pexp (or%/(1-kot)) erte (xlbt(1-bot)] /).
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EXPANSION THEOREMS FOR THE INFINITE TIME INTERVAL

We now develop theorems which determine what solutions of
equation (2.6) can be represented by the series (5.2) for
O0<t <o, This is achieved by introducing suitable

restrictions on the growth of the coefficients a, and b..

k k
Theorem 6.1, ILet p < 2 and let h, be the least integer
such that h. + u/2 > 0. Iet {a }Oo be a sequence with the
0 k k:ho

property that

(6.1) 1lim sup [anll/n = qg.
n - o

A function wu(r,t) has an expansion of the form (5.7), which

converges for 0 <t <w, if and only if

2 [
6. ryt) = =X (cx7/ht) r,t, dy .
(6.2)  u(r,t) =S IOTM( ¥)e(y)dy

Here, Tu(r,t,y) is given by (5.10) and g(y) is an even entire
function of growth (1,q) defined by (5.9).

Proof. Substitute the series (5.9) into (6.2). Applying
Theorem 3.5 with m = 2k, we formally obtain the series (5.7).
The term-by-term integration needed to derive the series (5.7) is

valid if

[+

(6.3) J= joTu(r,t,y)G(y)dy <,

Here G(y) is obtained from g(y) by replacing

! 5)4.
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a, by ]akl in (5.9). Write (6.3) in the form

' . m M
(6.k) 7= j‘oTu(r,t,y)G(y)dy + jmTu(r,t,y)G(y)dy

@

+ J‘MTH(r’tJST)G(y)éy.

Denote the integrals in (6.4) by Jys I, and J5 respectively.
Then, a comparison of formula (6.4) with (5.12) shows that

Il = Jl and 12 = JE’ hence the integrals Jl and J2 are
finite. The function g(y) and, hence, G(y) has growth

(1,9). From formula (5.3), it follows that for M sufficiently
large G(y) < eqy/@ for y > M, where © 1s any number between
O and 1. Alsb, for y suffiéiently large, if r # 0 and

t >0 are fixea, then yu/grl_“/gKu/E—l(ry/2t) is bounded By

some positive constant C. Thus, for M' sufficiently large,

o 2
(6.5) gy <c [ e (Ffg + 2ay.

Clearly, the integral in (6.5) is finite for 0 < t < ». It
follows that the inequality (6.3) is valid.

Necessity.  Assume that formula (6.1).is valid. Use
formula (5.6) to examine the growth of g(y), as given by
(5.9). 8ince only even powers of ¥y are involved, replace n
by 2n and c by anP(n+l/2)/F(n+u/2) in formula (5.6).

en
Simplifying, we have



(6.6) lim sup lanll/gn < 5.

n - o

A comparison of (6.1) and (6.6) shows that g(y) and, hence,
G(y) have growth (1,q). It follows that the integral in
(6.2) converges absolutely for O < t.< ., Therefore, the
interchange of summation and integration signs needed to obtain
(6.2) from (5.7) is valid. This completes the proof.

For expansions in terms of the set {u(u,k+l/2,r,t}zzo, we
have

Theorem 6.2. Let p <2 and let h > 0 be the least

1

integer such that h. + (p+1)/2 > 0. Iet (b ) be a
1 n n:h:L

sequence with the property that

1 2
/o

(6.7)  lim sup |b_|
n -% o n

A function wu(r,t) has an expansion of the form (5.18),

which converges for 0 < t < w, if and only if

2 ©
6.8 u(r,t) = X0 _(-x7/4t) T (r,t,y)h(y)dy.
6.8 str) = BEELD [0 iy

Here, T“(r,t,y) is given by (5.10) and h(y) is an odd
entire function of growth (1,q) defined by (5.20).

The proof of this theorem, being similar to that of
Theorem 6.1, is omitted.

The main result of this section is obtained by combining

Theorems 6.1 and 6.2.
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Theorem 6.3. ILet p <2 and let h. and hl > 0 be the

0
least integers such that hy + uw/2 >0 and hy + (p+l)/2 > 0.

[ee] (o]
Let {an}nzho and {bn}n:hl

be sequences with the property

that

(6.9) lim sup |a ‘l/n = lim sup [b ll/n = qg.
n- o n n - o n

A function wu(r,t) has an expansion of the form

(6.10) wu(r,t) = ¥ aku(u,k,r,t) + 3 bku(u,k+l/2,r,t),

k:ho k=hl

which converges for 0< t <w, if and only if

| exp (-rg/ht) .

t /uT(1-p/2) "0

(6.11)  u(r,t) = Tu(r:t:Y)f(Y)dY-

Here, Tu(r,t,y) is defined by (5.10) and f(y) is an entire
function of growth (1,q) defined by (5.28).

Clearly, the function defined by the series (6.10)
satisfies equation (2.6) for 0 <t <w. Moreover,
lim u(r,t) = 0 if r # 0 and

0+

[eo] k [ee]
u(0,t) = ¢ a b /k! + % b, t

k=ho k:hl

k“Ll/z/r(1«:+5/2) .

When p > 2, we have

Thearem 6.4, Tet w>2 and define p=14 - . Let

hyand h. > 0 Dbe the least integers such that h. + p/2 >0 and

0 1 0
[eo] oo}
hy + (u+l)/2 > 0. Iet {ak}k:ho and (bk}k=hl be sequences
which satisfy condition (6.9). A function v{(r,t) has an
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expansion of the form

[o o] fee]
v(r,t) = & akv(w,k,r,t) + T bkv(w,k+l/2,r,t), which
k=h k=h

0 1
converges for 0 <t <ew, if and only if the function
u(r,t) = fw_gv(r,t) has an expansion of the form (6.10)
convergent for 0 < t <=,
The proof of this theorem is identical to that of Theorem
5.4,
The fellowing examples illustrate the theorems developed in

this section.

Example 1. ILet O0<u<2. Then h.= 0 in Theorem 6.1.

0
Write
(o]
(6.12)  u(r,t) = ¥ u(u,k,r,t).
k=0
A comparison of (6.12) with (5.7) shows that a, =1,
k=0,1, 2, ... . Hence lim sup [an[l/n = 1. From formula
n -+ w
(5.9) it follows that
© 2k
r(x+1/2) y 1-p/2
= = /7 2 I .
g(y) = = r(k+/2) (2k)? Jr (3/2) u/2-l(y)

k=0
Since g(y) has growth (1,1), the series (6.12) converges to a
solution of (2.6) for 0 <t <w. Moreover u(0,t) = e’. From

(6.2), an integral representation for wu(r,t) is given by

U2 ep(-x?/it)
t T (1-p/2)

(6.13)  u(r,t) = (3)

o«

j‘o[exp(-yg/ht) WK, 1oy (23/20)T, 15 (7)ay
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The integral in (6.13) cannot be evaluated in closed form. How-
ever, using the identity Ké(z) = (n/2) esc (aﬂ)[I_a(z) + Ia(z)],
substitute into (6.13) and use [3], p. 197, (22) to evaluate

. . NV
the integral containing the product I“/e_l(ry/EL)*u/z_l(y).

We obtain

(6.14)  u(est) = e'ru/2) (/2 M, (o)

. 2
- (z/2)t /2 T(/2) oxp (-r=/bt)

(v /e

o YIl_M/E(TY/gt)Iu/g_l(Y)dy—

In this form, u(r,t) is expressed as the difference of
positive functions.

Example 2. Iet p =1 in example 1. Since u(0,t) = et,
an integral representation for wu(r,t) is given by formula

(2.15) and we have

t 2
(-r"/4y) t-y)
u(r,t) = 23} jo exp ryé% exp (6Y) 4y, From [5], p. b5,

(9), it follows that

t
u(r,t) = -g—- (e—r erfe [2:;{ -ﬁ] + e erfe [grﬁ +Jt]> .
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EXTENSION OF RESULTS TO THE CASE u = 2

We now extend the results of the previous sectioné to
solutions of equation (2.6) when p = 2. In this case,
solutions have a logarithmic singularity in the neighborhood of
r = 0. Provided that appropriate modifications are made, we can
use the techniques developed in earlier sections to study these

solutions.

7.1 Integral Representations.

In Theorem 2.1, conditions (2.7a) and (2.7b) each reduce to
a=-1, b=0, when p = 2. Making these choices, set ¢ = 1
in formula (2.5). Then (2.5) defines a solution of equation
(2.6) for p = 2. We denote this solution by
(7.1.1)  Y(r,t,f) = lm[sg(r,t)*f(t)],
where

e 2y
(7.1.2) Sg(r,t) = (knt) Texp (-r"/bt).

An integral form, formula (7.1.1) becomes

b -1 2
(1.1.3)  ¥(r,t,1f) = joy exp (-r"/hy)f(t-y)dy.

Introducing the change of variable gz = rg/Hy, it follows that

60
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(T.1.%)  ¥(x,t,8) = [, . e %2 e (422 2 )asz.
r t

Theorem 7.1.1. Let £(t) be absolutely integrable on

(0,T) with T <. Then,

(7.1.5) 1lim Y(r,t,f) =0, if » > O.
0+

Proof. Introducing absolute values on both sides of

(7.1.4), it follows that

(7.1.6)  [¥(x,t,7)] SJ‘:E/ht(e'zz)z'gIf(t-rg/hz)ldz.

Since lim e %z = 0, the function e—Zz is bounded by some
20

positive constant M for sufficiently large values of z. Hence

(7.1.7) Lim [¥(r,t,£)] <M lim j 5 z'zlf(t-rz/uz)}dz.
0+ a0+ 17 /bt

With the change of variable y =t - rz/hz, the inequality

(7.1.7) becomes

t
(7.1.8) lim |¥(r,t,f)| < M lim [ 1t(x)|ay = o.
0+ 0+ " 0

We now examine the behavior of Y(r,t,f) as r - O.

(o]
Lemma 7.1.1. If Y(r,t,f) = f 2/4 e'yy'lf(t)dy, then
r t

lim Xﬁf&ﬁéfg-= £(t), 4if t > o.
r0 -In r
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Proof. From the definition of Y(r,t,f) and [1], p. 229,

(5.1.11), it follows that
(7.1.9) Y(r,t,f) = f(t)[-y-ln(rg/ut)- ;§—l)n(r2/4t)n/n(n3)],
n=

where vy dis Euler's constant.

Since | ; (-l)n(re/ht)n/n(nl)l < exp (r2/4t),. we find that
. n=1

Lim < r’téf) = £(%), if t > 0.

r~»0 -ln r

Theorem 7.1.2, Let the function' f(t)  be Lipschitz

continuous with exponent a, 0 < a <1, on the interval

[O}T] with T <o, Then 1im Y(r;téf)

= f(t), if 0< t < T.
r0 -Ilnr

Proof. Let Y(r,t,f) be the function defined in Lemma
7.1.1. Tet Y(r,t,f) be given by (7.1.3). Define the function

J(r,t) by
(7.1.20) JI(r,t) = Y(r,t,f) - Y(r,t,f).

The argument used in Theorem 2.4 to prove that 1lim I(r,t) =0
0

can now be used to prove that 1im J(r,t) = O. Then, from
0
definition (7.1.10), it follows that

(7.1.11) lim Zﬁfiﬁié?-: 1im ZLE;E%%Z .

0 -Invr ™0 =lnr

By Lemma 7.1.1, the limit of the right member is f(t). This

completes the proof.
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By repeating the arguments of Theorems 2.5 and 2.6, it can be

shown that the conclusion of Theorem 7.1.2 is valid when £(t) is

continuous from the left and absolutely integrable on [0,T] with

T < ». Corresponding to Corollary 2.1, we have

Corollary T7.l.l. Let f(t) be continuous from the left and

absolutely integrable on [O,»). Then 1lim

0<t <,

Y(r)taf) _
0 -1ln r2

£(t), if

7.2 Expansion Theorem Preliminaries.

A comparison of

(7.2.1)  ¥(r,t,f)

Define the function

(702-2) Y(h)r:t)

It follows from (7.

(1.2.3)  y(h,r,t)

In obtaining the

1t

2

i1

i

definition (7.1.1) with (2.13) shows that
[r(1-0/2)U (x,t,£) ]l .

p=2
y(h,r,t) by
Y(r,t,th/r(h+1), for h > -1.
.1) that
[r (1-1/2)0, (2,6,8°/r (0+1) 1|

p=2

[r(l—u/z)u(u,h,r,t)ll

p=2

2
ohem T/ ¢(h+1,1,r2/ut).

. member of (7.2.3), we have used Theorem 5.1.

The final member of (7.2.3) is defined for all real h. It

provides an extension of the definition of y(h,r,t) given by

(7.2.2).
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Theorem 7.2.1. If, for h real,

2

(7.2.4)  y(h,r,t) = B /it ¢(h+1,1,r2/4t),
then
(a) y(h,r,t) satisfies equation (2.6), when p = 2,
(B) lim y(h,r,t) = 0, if r £ 0,

40+
and
(¢) 13 YLh:r:t) _ 'th SF ot >

im 5" T oy i 0.
0 -Inr *

Proof of (A). This result follows from the remark

following the proof of Theorem 3.2, part (A).

Proof of (B). From (7.2.4) and (A-14), it follows that

2
lim y(h,r,t) = lim BT /he ¢(h+1,1,r2/4t) =0, if r # 0.
0+ 0+

Proof of (C). From (7.2.4), we have
2

-r~ /bt 2
tim 2 t) _n e 1 0P
r-»0 ~1ln r r-0 -lnr

For t > 0, use Table 2, (d), with a = h + 1, to evaluate the
limit on the right. We then obtain result (C).

In order to determine which solutions of equation (2.6) can
[ee]

be represented in a series of the form u(r,t) = % aky(k/E,r,t),
k=0
we need the following integral representation for y(m/Z,r,t).

Theorem 7.2.2. If m =0, 1, 2, ..., then
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’ 2 ©
(7.2.5) y@/2,r,t) = EEEK:E—Z&EJ-I e-zg/utsz(rz/2t)
t Jfx 0

[(m/21/2) 2z ] 4
T(m/2+u/2) m! Ze
Proof. Combining definition (7.2.2) and the result (7.2.1),

it follows that y(m/2,r,t) = [F(l—p/E)u(u,m/2,r,t)]l

Formula (7.2.5) now follows from formula (3.15).

7.3 Expansion Theorems.

When p = 2, the following result corresponds to Theorem 5.1.

Theorem T.3.1. A function y(r,t) has an expansion of the

form

(7°5-l) Y(r:t) = Z aky(k:r:t))
k=0

which converges for 0< t < T, if and only if

(71.3.2)  y(r,t) = EEE%;§7ZEE—-I 2 /4tzK o(rz/2t)e(z)dz.
t

Here, g(z) is an even entire function of growth (2,1/4T)
defined by

® 2k
(153) s = 2 o R oy

Proof. As in Theorem 5.1, the proof depends upon the

validity of the term-by-term integration of the series (7.%3.3)

—ze/ht

after multiplication by e zKo(rz/Qt). Since
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lim zKO(rz/et) = 1im zKO(rz/et) =0, if r # 0, this term-by-term
Z4o z~0
integration is valid for 0<t < T if g(z) has growth
(2,1/4T). 1In the proof of necessity, this is part of the
hypothesis; in the proof of sufficiency, this fact is proved by
applying Stirling's formula to the coefficients in the series
(7.3.1). -
The companion result, for expansion valid for 0 <t <o, is
given by

Theorem 7.3.2, Let be a sequence with the

{ ak]ol.;:o

property that 1lim sup [anll/n = q?. A function y(r,t) has an
n - o

expansion of the form (7.3.1), convergent for 0 <t <o, if and
only if (7.3.2) holds where g(z) is an even entire function of
growth (1,q) defined by (7.3.3).

In Theorem T7.3.1 (Theorem 7.5.2), it is clear the function
defined by the series (7.3.1) satisfies equation (2.6) when

p=2 for 0<t<T, (0<t<w). Moreover, 1im y(r,t) =0
t-0+
(r,t) e k
and lim X——i-—§ = T at /k! in each theorem.

0 -lnr =0
Analogous results are valid for expansions in terms of the

set [.V(k+l/2,r,t)}i=o.

7.4 Asymptotic Behavior.

When u = 2, the method used in Theorem 4.3 to examine the
asymptotic behavior of solutions of (2.6) does not apply. The

difficulty arises in the following way. From definition (7.1.1)
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and [T7], p. 146, (29), it follows that
(7.4.2)  LY(r,%,8)] = 2K (x /5 )E(s),

where Tf(s) is the Lapléce transform of f(t). From (7.%.1) we
find L[Y(r,t,f)] ~ 2£(s)[-1n (r /s )], as s - O+. Since IL[Y]
has logarithmic behavior as s - O+, Theoren 4.2 cannot be used
to describe the asymptotic behavior of IZY(I,T,f)dT, as t -,

However, analogous to Theorem 4.4, we have

Theorem T.4.1. ILet f£(t) be absolutely integrable on

(0,T) for each T € (O,@). If h >0 and f(t)Nth/l"(h+l) as

t -, then
(7.5.2)  Y(r,t,f) ~y(h,r,t), r>0, as t —-o.

Proof. By hypothesis f(t) = th/r(h+l) + e(t)th where

e(t) 20 as t »w». Let > 0 be given. Choose M > 0 such

€

’ -1 -r2/4t
that |e(t)] < e /T(n+1) if t>M.  Set K(r,t) = t7e .
For t > M we have

M
(7.%.2)  ¥(r,t,f) = Iof(T)K(r,t—T)dT

tr h

+ IM- Th+l + G(T)Th]K(r,t-T)dT
Mpr Th

= J"Oh f('}:) - m:ﬂ ]K(I‘,t-’r)d’f

t h %
h
+ IO I'“_E?FI_)‘ K(r,t-7)dr + J"Me(r)fr K(r,t-7)dr
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M h
= .V(hJI':t) + J"o[ f(’l’) - IﬁT]K(r,t-T)dT

t
+ f e(T)ThK(r,t—T)dT.
M

Consider X(r,t) as a function of t for fixed r. It has a
meximum when 1t = r2/4, and this maximum is h/erz. For r > 0,

it follows that
h h

M . M .
U“OLf(T) - m~]K(r,t-r)dT < leo[,f(’f)l I YE)) ]ch < Cy;

where Cl and 02 are positive constants depending on r.

Moreover, |e(t)]| < eo/r(h+l) when t > M so that

t t h
h T
IMG(T)T K(r,t-7)dr| < €g fo oL K(r,t-t)dv = eOY(h;r,t).

Substituting these results into the last line of (7.4.2),we find
[¥(x,t,£(t)) - y(h,r,t)]| < c, + eoy(h,r,t). Since y(h,r,t) > 0,
it follows that

73y | T E(t) - y(rt) | %

. .
y(h,r,t) y(h,r,t) E:O

From formula (7.2.4) and Table 2, (d), we have

1 h 2 .
lim y(h,r,t) = FaTIY lim t (-1n (x°/b4t)), if r > o.
T I+l to

Hence, if h > 0, it follows from (7.%:.3) that

(7.4.4) 1im Y(I‘,t,f(t)) - y(h,r,t) < g

£eyo0 Y(h:r)t) 0

Since e, 1is arbitrary, the limit in (7.4.4) is zero. This

completes the proof.
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A BASIC FORM FOR SPECIAL SOLUTIONS

In a remark following the proof of Theorem 3.2, part (A), the

point was made that a solution of equation (2.6) is given by
(8.1) G(r,t) = cthe_ZF(h+u/2,u/2,z).

In this formula, z = r2/4t, ¢ 1is any parameter independent of
r and t, and F(a,b,z) is any confluent hypergeometric
function with parameters a and b. In sections 5 and 6, it was
shown that certain solutions of the radial heat equation had valid
expansions in terms of the set of radial time functions
{u(u,m/2,r,t)}:;o. Fach element in this set has the form (8.1).
There are other expansion theories for solutions of (2.6). Each
theory uses one or more sets of special éolutions. In this
gsection, we introduce several of these sets,'and indicate the
major results of the theory associated with each set. We then
show that the elements of these several sets all have the form
(8.1).

When u = 1, equation (2.6) reduces to the one-dimensional
heat equation. P.C. Rosenbloom and D.V. Widder [12] have made a
_detailed study of the validity of expansions of solutions of this
equation in terms of two sets of special solutions. The first is

the set of heat polynomials {vn(r,t)}z_o defined by

69
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n/2 ~1/2
(8:2)  vy(r,t) = ()Y ((20)Y3), _e<x <o,
~—o <t <o,
where Hk(z) is the Hermite pblynomial of degree k. The

second is the set of associated functions Uﬂn(r,t)}z_o where

(83)  w(rt) = () Pexp(-2® t)y, (x/t,-1/0),
~o < r <o, 0<%t <,
The authors develop the following basic theorems regarding
expansions for solutions of the heat equation:
(I) Expansions in terms of heat polynomials are valid in a
time strip, |t| <o, in which the solution u(r,t) satisfies

a Huygen's principle. That is,

® -1/2 o
u(r,t) = I [hr(t-tt)] exp[-(r-y) /4 (t-t*) Ju(y,t')dy, for all

t and t'dbsuch that - g <t' <t <.

(II) Expansions in terms of associated functions are valid
in a half-plane t > > 0 in which the solution has certain
entireness properties.

Several rules for determining the coefficients in these
expansions are given. The L2 theory of such expansions is also
examined.

L.R. Bragg [2] has developed results analogous to (I) and
(I1) for expansions of solutions of (2.6) when u > 1. Again, the
theory is developed in terms of two sets of special solutions:

(a) the set {R;(r,t)}zzo of radial heat polynomials and (b) the

set (ﬁi(r,t)}z_o of associated functions. The elements of the
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first set are defined by
(8.4) R(r,t) = kz(ut)li}({“/g'l)(_f/ut),

where Lia)(z) is the generalized Laguerre polynomial of order
n with exponent a. The associabed function ?i(r,t) is defined

to be the Appell transform of Ri(r,t). That is

(8.5) R (r,t) = AR (r,t)] = Su(r,t)Ri(r/t,—l/t).

Underlying the expansion theorems for the radial heat polynomials
is an integral representation for solutions of the initial

value problem.

[Di + (E%E)Dr]u(r,t) = Dtu(r,t), u>1
(8.6)

u(r,0) = o(r), r> 0.
In subsequent papers, L.R. Bragg has related the particular form
of solution of (8.6) used in [2] to Laplace transforms and their
inverses [3]. These results have been used [4] to examine the
character of solutions of (8.6) when the function ¢(r) has a
pole at r = 0, but is otherwise entire.

The expansion theorems given in [2] were discovered
independently by D.T. Haimo [8] who also developed analogous
results for the L2 theory of expansions when p > 1 [9]. In
[8] and [9] the special sets of solution functions are denoted
{Ih(u~l)/2(r’t)}2=0 and {wh,(u—l)/Z(r’t)}Z=O° These special

solutions are related to Bragg's radial heat polynomials and
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associated functions as follows:

B-T) By (ue1)/a(eob) = Ri(z,t)
and
(8.8) Mo, (ue1)/2(0st) = Bo(rot).

We now review some expansion theories for solutions of the
initial value problem

2
Dru(r,t) = Dtu(r,t)

(8.9) |
u(r,0) = 0, r > 0; u(0,t) = £(¢t), t > 0.

H. Poritsky and R.A. Powell [11] studied the set of

solution functions (T (r,t)} where :
n n=0
t n .
(8.10) T (r,t) = 2 j S, (r,t-y)y /n! dy.
n 0 1

Here Tn(r,to) represents the temperature in the infinite rod
0<r <o in which Tn(r,O) =0 if r > 0 and heat is
liberated at the rate tn/nl per unit time from t = 0 to
t = to at the point r = 0. The authors show that
Tn(r,t) = tn+l/2/r(n+5/2). Moreover,

t
821)  2,(0%) = [ 2(6) 78 (r0)T, 07y

D.V. Widder [14] defined a related set of solution functions
{Uh(r’t)}n=o by setting

t
(8.12) Un(r,t) = jor(t_y)'lsl(r,t—y)yn/nl 4y .
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He then examined what solutions of the problem (8.9) have

(o o]
expansions of the form wu(r,t) = T [anUh(r,t) + bnTn(r,t)]. The
n=0

main results of [14] are obtained by setting p = 1 in Theorem
5.3 and Theorem 6.3.

Let us now examine how formula (8.1) relates to the special
solutions which have been mentioned in this section.

Theorem 8.1. For appropriate choices of ¢, h, p, and F

(see Table 1), the special solutions mentioned in this section

have the form (8.1).



TABIE 1
h -z 2
G(r,t) = ct e “F(h+/2,u/2,2), where z = r/ht.
Author G(r,t) % h c F(hHe/2,0/2,2)
(a)] P.C.Rosenbloom vn(r,t) 1 |n/2 (—h)n/2 ezw(-h,u/2,-z)
and D.V.Widder
1
(b) w )] 1 -] 0B (an/2,e/2,2)
(c) Ri(r:t) H>1i n ("L‘)n ezw(-h;u/&-Z)
L.R. Bragg _
~ 2,n
(a) B (e, 0 > 1 |-(ae)| ()20 g (0t/2,1/2,2)
(e)| H.Poritsky & -1/2
R.A. Powell; Tn(r,t) 1 | n+¥l/2] = y(ht+u/2,0/2,2)
D.V. Widder .
(£)| D.V. Widder Un(r,t) 1 n n’l/g § (htp/2,1/2,2)
NOTE: {(h+un/2,n/2,z) and ezy(—h,u/E,—z) are confluent
hypergeometric functions with parameters h+u/2 and
p/2. They are linearly independent functions for
all choices of h and p (see the Appendix,
formula (A-8)).
Proof of Table 1, (a). We must show that
(8.13) v (r,8) = (-1)YA2/2 (af2,1/2,-0).
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Case IT. ILet n=2m, with m=0, 1, 2, ... . Formula (8.13)

becomes

(8.14) v, (r,8) = (-1)" y(-m,1/2,-2).

Using the identity (A-12) and the fact that

1)?

(_
nih™

Lg_l/2)(z) _

Hgn(,/i ), it follows that

(8.15) v, = (-t), ((-2)7/?).

Since =z = rg/ht, formulas (8.15) and (8.2) are now identical.
Case II. Iet n=2m + 1, with m=0, 1, 2, ... . Formula
(8.13) becomes

(-l)m+l/24m+l/2tm+l/2¢(—m-l/2,l/2,-z).

]

(8.16) v2m+l(r,t)

Applying (A-9) with = -m - 1/2, and b= 1/2, it follows that

o

(_l)m+l/2um+l/2tm+l/2 (-Z)l/zw(-m,B/Z,—z).

(8.17) v2m+l(r,t)

Using identity (A-12) and the fact that

Lil/g)(z) = ;:;éﬁ%%;i7§ H2n+l(zl/2), we obtain
_ m+1/2 1/2
(8.18) v, (x,t) = ()M, ((-2)),

Now, formulas (8.2) and (8.18) are identical. This completes the
proof of Table 1, (a).

Proof of Table 1, (b). Substitute (8.13) into (8.3), the

definition of wn(r,t). It follows that
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1

(8.29)  w_(v,t) = (be) ey (r®/bt)v (r/t,-1/5)

(L
(yr) Y20y 2 e %4 (-n/2,1/2,z).

11

This is exactly the result given in Table 1,(v).

Proof of Table 1, (c¢). We must show that

(8.20) Ri(r,t) = (-3)% My (-n,p/2,-2).
It follows from the identity (A-12) that
(8.21)  ®(x,t) = (b)Yt {2 ()

This is the definition for Ri(r,t) given by (8.4).

Proof of Table 1, (d). This result follows from definition

(8.5) and the representation for Ri(r,t) given in Table 1, (c).

Proof of Table 1, (e) and (£f). The functions Tn(r,t) and

Un(r,t) are defined in (8.11) and (8.12) respectively.
Comparing these definitions with formula (2.13) and using formula

(3.1), we find

(8.22) Tn(r,t) = Ui(r,t,tn+l/2/r(n+5/2)) = u(l,n+1/2,r,t)
and

(8.23) U (z,t) =>Ui(r,t,tn/nz) = u(l,n,r,t).

It follows from Theorem 3.1, that

(8.24) T _(r,%) = xR 2Ry (ni1,1/0,0),

and
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-1/2,n_-

(8.25) U (¥,t) = = Zy(n+1/2,1/2,z).

These are exactly the entries in Table 1, (e) and (f).
If the set {u(u,m/2,r,t)} appeared in Table 1, the entry

would have the following form

G(r,t) 1 h c F(htp/2,0/2,2)

(8.26) u(p,m/2,r,t) | p < > m/2 [F(l—u/Q)]—l y(h+/2,u/2,2)

Comparing (8.26) with Table 1, (b) and (d), one is led to
suspect that u(w,m/2,r,t) is also an "associated" function.
Here, the word "associated" is used in the sense that there
exists a function W(u,m/2,7,t). such that the Appell transfcrm of
W (denoted A[w]) is equal to u(u,m/2,r,t). This is, in fact,
the case. In the notation of Table 1, define the set

[eo]
{W(u,m/E,r,t)}m=o as follows

G(r,t) | » h c F(ot 5,5,2)

Y
(8.27) [W(u,5ow,8) [z |- (& + B)| (4 (1) (0 (1) T % (0., -2)

Then, mHu

n/2 E
(8.28)  Wlwm/2,m,8) = LY y (02, -2),

and

(8-29) Alw] = S“(I‘:‘G)W(M:m/%r/t;-l/t) = u(u,m/Z,r,t,).

There is an important difference between the pair of functions
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W(w,m/2,r,t), u(p,m/2,r,t) and the pair Ri(r,t), ﬁi(r,t).
The latter pair are both real valued functions while the
function W(u,m/2,r,t) is always complex valued if t > 0.
When u # 0, -2, -b, ... , +this fact follows from formula (A-T).
When p =0, -2, -k, ..., formulas [1], p. 504, (15‘.1.6) and

(13.1.7) show that W(w,m/2,r,t) is still complex valued.



SUMMARY

D.V. Widder [12] has developed necessar& and sufficient
conditions for the validity of expansions of solutions of the
one-dimensional heat equation.

In this thesis, we have developed comparable expénsion
theorems for the functions Up(r,t,f) and Vu(r,t,f), which are
solutions of the radial heat equation [D§+-E—%—l Dr]u(r,t) =
Dtu(r,t), for p<2 and u > 2 respectively. Necessary and
sufficient conditions were developed under which the function
Up(r,t,f) could be represented in terms of the set of radial
time functions {u(p,h,r,t)}. The asymptotic behavior of
U“(r,t,f) and t_%fZUu(r,y,f)dy was examined and related to the
behavior of f(t), its Laplace transform, and to certain radial
time functions. Using the identity Ué_a(r,t,f) = r_aV2+a(r,t,f),
a > 0, these results were extended to the function Vﬁ(r,t,f).

When p = 2, solutions of the radial heat equation with
logarithmic singularities in a neighborhood of r = 0 were
obtained by modifying the definition of Uu(r,t,f). The methods
used to examine series representations and asymptotic behavior for
Up(r,t,f) when p < 2were also modified‘to obtain similar

results when p = 2.

Finally, it was proved that the elements of several sets of
special solutions of the radial heat equation, including the

radial time functions, have a common form.

9
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APPENDIX

CONFIUENT HYPERGEOMETRIC FUNCTIONS

We collect here, for reference, the results about confluent
hypergeometric functions which have been used earlier. These
results are taken from [1], Chapter 13, and [6], Chapter 6.

The confluent hypergeometric equation is given by

2

(A-1) 2 LT, (b-z) %X - ay = O.
dz z

N

This equation has a regular singular point at z =0 and an
irregular singular point at z = w. Any solution of (A-1) is
defined to be a confluent hypergeometric function with parameters
a and b. For the purposes of this paper, the parameters a
and b are restricted to real values. The literature on
confluent hypergeometric functions is developed in terms of two

solutions of (A-1) which are denoted by

(a-2) ¥, = ofab,z2)
and
(A'B) Y2 = W(a:b:z)-

Another solution of equation (A-1) is given by

(A-4) = ey (b-a,b,-z).

3
The solution functions ¥y and ¥y, can be represented by

generalized hypergeometric series ag follows:

8o
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(A-5) o(a,b,2) = lFl(a5b5Z): z > 0,

and

(4-6) ¥(asb,2)

i

z-aeFo(a,l+a—b;—l/z), z > 0.

The function 4{(a,b,z) is a multi-valued function of z.
We usually consider its principal branch in the plane cut along
the negative real axis. However, define f(-z+i0) as the limit
of f£(-z+in) as 1N + O through positive values, and define

f(-z-i0) similarly. Then

(A1) y(s,-2230) = & DL o(ou0,p,2)

- Frb;l) gt 5 1-b @(l-a,Z-b,z)}, b#£0,+1,+2, .40,

where z > 0 and either upper or lower signs are to be taken

throughout.
The solutions (A-3) and (A-4) are linearly independent for
all values of the parameters a and b, since the wronskian of

the pair is given by

(A-8) W(yg;yB) - omi(b-a), bz

The Kummer transformation for ¢(a,b,z) is given by the

identity

(A-9) y(a,b,z) = zl—b¢(l+a-b,2—b,z).

There are numerous integral representations for ¢(a,b,z).
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The two that we require are given by

2, (1-0)/2 = -t a-b/2-1/2
S ORETT .~

(A-10) y(a,b,z) = Kb_l[2(zt)l/2]dt,
for a>0, a-b>-1, and

“20p1) NP gt for & > o

-11 a,b,z) = e ooe
(A-11)  y( ) ﬂ‘g)‘fl

Tet L;b)(z) denote the generalized Laguerre polynomial of

order a with exponent D. Then
(A-12)  y(-n,a+l,z) = (-l)nn!Léa)(z), a > -1 and n=0,1,2,... .
Moreover, combining formulas (A-9) and (A-12), it follows that

(A-13) {(a,a+ntl,z) = z_a—n(-l)nn!Li-a—n)(z),-(a+n)>—l
and n =0, 1, 2, ... .

From (A-6), we find that
(A-1k) y(a,b,z) = z_a[l+O]Zl-l], as z - o,

For small z, the behavior of {(a,b,z) is indicated in

Table 2.
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TABLE 2

y(a,b,z) = F(a,b,z) + 0(g(z)), for small z.

b F(a,b,z) g(z)
a b>2 Z b-2
) A |
(b) b=2 r(a) [in z|
(e)l1<Db<2 1
(a) b=1 -1n z/T(a) |z 1n z]
(e)]O<Db<1 |z|1'b

r(1-b)

(£)] bv=0 T (a-b+1) |z 1n z]
(g)] bp<oO |z|




